A Mathematical Model for Multiple-Load AGVs in Tandem Layout
Authors
Abstract:
Reducing cost of material handling has been a big challenge for companies. Flexible manufacturing system employed automated guided vehicles (AGV) to maintain efficiency and flexibility. This paper presents a new non-linear mathematical programming model to group n machines into N loops, to make an efficient configuration for AGV system in Tandem layout. The model minimizes both inter-loop, intra-loop flow and use balanced-loops strategy to balance workload in system simultaneously. This paper significantly considers multiple-load AGVs, which has capability of reducing fleet size and waiting time of works. A modified variable neighborhood search method is applied for large size problems, which has good accuracy for small and medium size problems. The results indicate that using multiple load AGV instead of single load AGV will reduce system penalty cost up to 44%.
similar resources
A mathematical model for the design of distributed layout by considering production planning and system reconfiguration over multiple time periods
In this paper, we develop a new mathematical model that integrates layout configuration and production planning in the design of dynamic distributed layouts. The model incorporates a number of important manufacturing attributes such as demand fluctuation, system reconfiguration, lot splitting, work load balancing, alternative routings, machine capability and tooling requirements. In addition, t...
full textA Mathematical Model for Integrating Cell Formation Problem with Machine Layout
This paper deals with the cellular manufacturing system (CMS) that is based on group technology concepts. CMS is defined as identifying the similar parts that are processed on the same machines and then grouping them as a cell. The most proposed models for solving CMS are focused on cell formation problem while machine layout is considered in few papers. This paper addresses a mathematical mo...
full textScheduling Single-Load and Multi-Load AGVs in Container Terminals
In this paper, three solutions for scheduling problem of the Single-Load and Multi-Load Automated Guided Vehicles (AGVs) in Container Terminals are proposed. The problem is formulated as Constraint Satisfaction and Optimization. When capacity of the vehicles is one container, the problem is a minimum cost flow model. This model is solved by the highest performance Algorithm, i.e. Network Simple...
full textThe performance of load-selection rules and pickup-dispatching rules for multiple-load AGVs
In this paper, we address the problem of load selection and pickup-dispatching of multiple-load AGVs. Various load-selection rules and pickup-dispatching rules are proposed and studied. The objective of this study is twofold. We want to understand not only the performance of load-selection rules and pickup-dispatching rules in two performance criteria—throughput and tardiness, but also the effe...
full textA Mathematical Model for Flood Protection
Many regions in the world are protected against flooding by a dike, which may be either natural or artificial. We deal with a model for finding the optimal heights of such a dike in the future. It minimizes the sum of the investments costs for upgrading the dike in the future and the expected costs due to flooding. The model is highly nonlinear, nonconvex, and infinite-dimensional. Despite this...
full textA Mathematical Model for Indian Ocean Circulation in Spherical Coordinate
In recent years, the Indian Ocean (IO) has been discovered to have a much larger impact on climate variability than previously thought. This paper reviews processes in which the IO is, or appears to be, actively involved. We begin the mathematical model with a pattern for summer monsoon winds. Three dimensional temperature and velocity fields are calculated analytically for the ocean forced by ...
full textMy Resources
Journal title
volume 13 issue 1
pages 67- 80
publication date 2020-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023